Obiettivi | Certificazione | Contenuti | Tipologia | Prerequisiti | Durata e Frequenza | Docenti | Modalità di Iscrizione | Calendario
Il Corso MLOps Engineering on AWS (MLPOPS) è progettato per i partecipanti che vogliono apprendere come automatizzare il ciclo di vita del Machine Learning. I partecipanti impareranno come creare, implementare e monitorare le pipeline di Machine Learning utilizzando servizi completamente gestiti come Amazon SageMaker, AWS Step Functions e AWS Glue. Inoltre, il corso copre le best practice di MLOps e il ruolo degli strumenti di automazione nella creazione di pipeline di Machine Learning scalabili e ripetibili. Il corso contribuisce alla preparazione per la Certificazione AWS Certified Machine Learning – Specialty.
Contattaci ora per ricevere tutti i dettagli e per richiedere, senza alcun impegno, di parlare direttamente con uno dei nostri Docenti (Clicca qui)
oppure chiamaci subito al nostro Numero Verde (800-177596)
Obiettivi del corso
Di seguito una sintesi degli obiettivi principali del corso Corso MLOps Engineering on AWS (MLPOPS):
- Apprendere l’automatizzazione del ciclo di vita del Machine Learning.
- Creare, implementare e monitorare le pipeline di Machine Learning utilizzando servizi AWS come Amazon SageMaker, AWS Step Functions e AWS Glue.
- Coprire le best practice di MLOps.
- Comprendere il ruolo degli strumenti di automazione nella creazione di pipeline di Machine Learning.
- Creare pipeline di Machine Learning scalabili e ripetibili utilizzando strumenti e pratiche di automazione.
Certificazione del corso
Esame AWS Certified Machine Learning – Specialty;
L’esame di certificazione AWS Certified Machine Learning – Specialty (MLS-C01) è progettato per valutare le competenze avanzate dei candidati nella progettazione, implementazione e gestione di soluzioni di machine learning su AWS. L’esame copre tematiche come la scelta degli algoritmi appropriati, la preparazione dei dati, la formazione e il perfezionamento dei modelli, e il deployment e l’ottimizzazione delle soluzioni di machine learning.
L’obiettivo principale è garantire che i candidati dimostrino una conoscenza approfondita delle best practice e delle soluzioni avanzate AWS per lo sviluppo di applicazioni di machine learning. Durante l’esame, i candidati affronteranno argomenti quali la progettazione di architetture scalabili e sicure, l’uso di servizi AWS come SageMaker e l’integrazione con altri servizi AWS per l’analisi dei dati.
Contenuti del corso
Module 1: Introduction to MLOps
- Machine learning operations
- Goals of MLOps
- Communication
- From DevOps to MLOps
- ML workflow
- Scope
- MLOps view of ML workflow
- MLOps cases
Module 2: MLOps Development
- Intro to build, train, and evaluate machine learning models
- MLOps security
- Automating
- Apache Airflow
- Kubernetes integration for MLOps
- Amazon SageMaker for MLOps
- Lab: Bring your own algorithm to an MLOps pipeline
- Demonstration: Amazon SageMaker
- Intro to build, train, and evaluate machine learning models
- Lab: Code and serve your ML model with AWS CodeBuild
- Activity: MLOps Action Plan Workbook
Module 3: MLOps Deployment
- Introduction to deployment operations
- Model packaging
- Inference
- Lab: Deploy your model to production
- SageMaker production variants
- Deployment strategies
- Deploying to the edge
- Lab: Conduct A/B testing
Module 4: Model Monitoring and Operations
- Lab: Troubleshoot your pipeline
- The importance of monitoring
- Monitoring by design
- Lab: Monitor your ML model
- Human-in-the-loop
- Amazon SageMaker Model Monitor
- Demonstration: Amazon SageMaker Pipelines, Model Monitor, model registry, and Feature
- Store
- Solving the Problem(s)
- Activity: MLOps Action Plan Workbook
Module 5: Wrap-up
- Course review
- Activity: MLOps Action Plan Workbook
- Wrap-up
Tipologia
Corso di Formazione con Docente
Docenti
I docenti sono Istruttori accreditati Amazon AWS e certificati in altre tecnologie IT, con anni di esperienza pratica nel settore e nella Formazione.
Infrastruttura laboratoriale
Per tutte le tipologie di erogazione, il Corsista può accedere alle attrezzature e ai sistemi presenti nei Nostri laboratori o direttamente presso i data center del Vendor o dei suoi provider autorizzati in modalità remota h24. Ogni partecipante dispone di un accesso per implementare le varie configurazioni avendo così un riscontro pratico e immediato della teoria affrontata. Ecco di seguito alcuni scenari tratti dalle attività laboratoriali:
Dettagli del corso
Prerequisiti
Si consiglia la partecipazione ai seguenti corsi:
- AWS Technical Essentials
- DevOps Engineering on AWS
- Machine Learning Terminology and Process
- The Elements of Data Science
Durata del corso
Durata Intensiva 3gg.
Frequenza
Varie tipologie di Frequenza Estensiva ed Intensiva.
Date del corso
- MLOps Engineering on AWS (Formula Intensiva) – Su Richiesta – 09:00/17:00
Modalità di iscrizione
Le iscrizioni sono a numero chiuso per garantire ai tutti i partecipanti un servizio eccellente. L’iscrizione avviene richiedendo di essere contattati dal seguente Link, o contattando la sede al numero verde 800-177596 o inviando una richiesta all’email [email protected].